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We present a symmetry-based analysis of competition between different gapped states that have been
proposed in bilayer graphene �BLG�, which are all degenerate on a mean-field level. We classify the states in
terms of a hidden SU�4� symmetry, and distinguish symmetry-protected degeneracies from accidental degen-
eracies. One of the states, which spontaneously breaks discrete time-reversal symmetry but no continuous
symmetry, is identified as a quantum anomalous Hall �QAH� state, which exhibits quantum Hall effect at zero
magnetic field. We investigate the lifting of the accidental degeneracies by thermal and zero-point fluctuations,
taking account of the modes softened under renormalization group �RG�. Working in a “saddle point plus
quadratic fluctuations” approximation, we identify two types of RG-soft modes which have competing effects.
Zero-point fluctuations, dominated by “transverse” modes which are unique to BLG, favor the QAH state.
Thermal fluctuations, dominated by “longitudinal” modes, favor a SU�4� symmetry-breaking multiplet of
states. We discuss the phenomenology and experimental signatures of the QAH state in BLG, and also propose
a way to induce the QAH state using weak external magnetic fields.
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I. INTRODUCTION

The quantum anomalous Hall �QAH� insulator is a state
of matter where spontaneous breaking of time-reversal sym-
metry produces �integer� quantum Hall effect in the absence
of any external magnetic field. First predicted in 1988,1 the
QAH state has never yet been observed. In the recent litera-
ture on interaction-driven topological insulators,2,3 the elu-
siveness of the QAH state has been ascribed to fluctuations,
which typically disfavor the QAH state with respect to a
quantum spin Hall �QSH� state, which is degenerate with the
QAH state on a mean-field level. Here we point out that the
fluctuations which govern the competition of different
gapped phases proposed in bilayer graphene �BLG� �Refs.
4–6� are dominated by the modes not present in the
models,2,3 leaving open the door to formation of a QAH state
at zero field in BLG. Also, we will propose a mechanism for
inducing the QAH state using external fields.

The theoretical literature on BLG predicts instabilities to
numerous strongly correlated states, which are gapped4–6 or
gapless7 depending on the way the electron-electron interac-
tion is modeled. The numerous gapped states predicted in the
literature are all degenerate at the level of mean-field
theory,4,5 and have the same instability threshold under one-
loop RG.6 The relation between these different states, and
their experimental signatures, have not yet been understood.

Meanwhile, recent experiments indicate that the gapped
state observed in charge-neutral BLG in quantizing magnetic
fields8 persists down to low fields, crossing over to another
gapped state at zero field.9,10 However, the nature of the
gapped state at zero field is unknown. Hence, clarifying the
relation between different gapped states and understanding
their physical properties is an interesting and timely task.

Here we present a unifying symmetry-based analysis of
strongly correlated states in BLG. The states predicted in
Refs. 4–6 are classified according to a hidden SU�4� flavor
symmetry into symmetry-breaking multiplets and an SU�4�
invariant singlet. The SU�4� singlet is a QAH state. The de-

generacy of the multiplets and the singlet is an artifact of the
approximations made in the analysis, and will be lifted upon
taking fluctuation effects into account.

Our analysis of fluctuations in BLG focuses on the effect
of the modes softened under RG. Those include the “longi-
tudinal” fluctuation modes �L-modes� analogous to those
discussed in Refs. 2 and 3, and also “transverse” fluctuation
modes �T-modes� which are unique to BLG. We find that
these two types of modes have competing effects: while
the L-modes favor the symmetry-breaking multiplets, the
T-modes favor the SU�4� invariant QAH state. The zero-
point fluctuations are dominated by the T-modes, and hence
appear to favor a QAH state at zero temperature. Meanwhile,
thermal fluctuations are dominated by the L-modes, and fa-
vor the symmetry-breaking multiplets. We speculate that
thermal fluctuations may drive a phase transition from the
QAH state at low temperatures to a SU�4� symmetry-
breaking state at higher temperatures, and estimate the tran-
sition temperature. We also discuss the phenomenology of
the QAH state, its possible experimental signatures, and pro-
pose a way to further stabilize it using external magnetic
fields.

II. SU(4) SYMMETRY

In this section, we show that within the often-used ap-
proximation where the difference between interlayer and in-
tralayer interactions is neglected,4–6,11,12 the interacting
Hamiltonian is invariant under rotations in a suitably defined
four-dimensional flavor subspace. Specifically, we perform a
unitary transformation by exchanging the sublattices A and B
in one of the valleys, upon which the single-particle Hamil-
tonian becomes identical for all spin and valley species while
the layer and sublattice blind interactions are left unchanged.

Before entering the discussion of the SU�4� invariance in
BLG, we recall that electronic states in BLG at low energy
are described by wave functions on the A and B sublattices
of the upper and lower layers,13,14 and are fourfold degener-
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ate in spin and valley. To analyze the structure of the Hamil-
tonian, it will be convenient to combine the spin and valley
components in a single eight-component wave function
��,s,v�x�, where � is the sublattice �layer� index. We shall use
the Pauli matrices in sublattice, spin, and valley space, de-
noted below by �i, �i, and �i, respectively. The low-energy
noninteracting Hamiltonian may then be written as

H0 =
�px + ipy�3�2

2m
�− +

�px − ipy�3�2

2m
�+, �1�

where ��=�1� i�2. Here m=0.05me is the effective mass.
Because of the presence of �3 in Eq. �1�, the single-particle
Hamiltonian is not invariant under rotations of valley com-
ponents. To bring it to an SU�4� invariant form, we perform
a unitary transformation on all operators,

Õ = UOU†, U =
1 + �3

2
+

1 − �3

2
�1. �2�

This transformation does not act on the spin space, however
it mixes the layer and valley indices of the wave function
��,s,v�x� by interchanging �-pseudospin components �layers�
in one of the valleys. As a result, �+ and �− are interchanged
and �3 changes sign in the �3=−1 valley, after which the
free-particle Hamiltonian, Eq. �1�, becomes identical in both
valleys.

Defining p�= px� ipy, the transformed noninteracting
Hamiltonian takes the compact form

H0 =
p+

2

2m
�̃− +

p−
2

2m
�̃+, �3�

where �̃+ and �̃− are obtained by transforming �+ and �−
according to Eq. �2�. This single-particle Hamiltonian is
manifestly invariant under SU�4� rotations in the spin/valley
flavor space.

Meanwhile, electron interactions can be described by a
many-body Hamiltonian written in terms of �q=�p�p

†�p+q
�the density summed over layers� and 	q=�p�p

†�̃3�̃3�p+q
�the density difference between layers�. The interacting
Hamiltonian, which incorporates a difference between inter-
layer and intralayer interaction,12 can be written as

H = �
p

�p
†H0�p +

1

2�
q

V+�q��q�−q + V−	q	−q, �4�

where V+�q�=2
e2 /�q is the Coulomb interaction and V−
=
e2d /� accounts for the layer polarization energy �here d
=3.5 Å is the BLG layer separation�. The �� term, which is
isotropic in flavor space and thus is SU�4� invariant, domi-
nates because d is small compared to

a0 = �2�/me2 = 10�Å, �5�

the characteristic length scale set by interactions.5 We there-
fore approximate by neglecting V−, an approximation that
becomes exact in the weak-coupling limit, where d /a0→0.
Under this approximation, the Hamiltonian is invariant under
SU�4� flavor rotations, generated by the operators �̃i and �̃i .
We will henceforth drop the ˜ symbols for notational conve-
nience, and will refer to the operators �̃, �̃, and �̃ as �, �, and

�, respectively. All operators are assumed to be transformed
operators unless specified otherwise.

III. CLASSIFICATION OF STATES AND TOPOLOGICAL
PROPERTIES

In the transformed basis, the mean-field Hamiltonian for
the gapped states described in Refs. 4–6 may be written as

H =
p+

2�− + p−
2�+

2m
+ 
�3Q , �6�

where m=0.05me is the effective mass. Here the Pauli ma-
trices �i act on the transformed sublattice space, and Q is a
4�4 hermitian matrix in the transformed spin-valley space
�flavor space�, satisfying Q2=1.

Since unitary Hermitian matrices have eigenvalues �1,
all gapped states can be classified as �M� ,M��, where M�

and M� are the numbers of +1 and −1 eigenvalues of Q,
respectively. There are three general types of states: �2,2�,
�3,1�, and �4,0�. There is an additional Z2 symmetry associ-
ated with the overall sign of Q which is absorbed into the
sign of 
. Following Refs. 1 and 15, the Hall conductance of
a state �M� ,M�� can be written as

�xy = �M� − M��
e2

h
, �7�

where we took into account an additional factor of 2 due to
the Berry phase 2
 in BLG.13 The �4,0� and �3,1� states,
which have M��M�, thus exhibit a quantized Hall conduc-
tance at zero magnetic field—the hallmark of a QAH state.
Because these states have �xy �0, they must spontaneously
break time-reversal symmetry. We will henceforth focus on
comparing the �4,0� and �2,2� states since the �3,1� states are
intermediate between the two. We will refer to the �4,0� state
as the QAH state but it should be remembered that the �3,1�
states are also QAH states. In contrast, the �2,2� states have
�xy =0, and preserve time-reversal symmetry but instead ex-
hibit quantum flavor Hall effect. If we parameterize the fla-
vor space by Pauli matrices �i and �i in transformed valley
and spin space, respectively, then the Q=�3 state is a QSH
state �Ref. 16� while the Q=�3 state is a quantum valley Hall
�QVH� state �Ref. 17�.

These states are analogs of the “topological Mott insula-
tors” discussed in Refs. 2 and 3, and as such host topologi-
cally protected edge states. The counterpropagating valley
modes for the QVH state were worked out in Ref. 17, the
copropagating charge modes and the counterpropagating spin
modes for the QAH and QSH states follow similarly. The
protection of edge modes is strongest for the �4,0� state due
to the unidirectional, chiral character of these modes. The
counterpropagating spin currents in the QSH state are pro-
tected in the absence of spin-flip scattering while the coun-
terpropagating valley currents in the QVH state are protected
in the absence of intervalley scattering �e.g., by short-range
disorder�.

We note that the above classification of states superficially
resembles that arising in an entirely different problem,
namely, the quantum Hall ferromagnet �QHF� in graphene in
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quantizing magnetic field.18 In the latter case, however, the
integers M� and M� are fixed by the electron density, i.e., by
filling of the fourfold-degenerate zeroth Landau level. In the
QHF problem, spontaneous time-reversal symmetry breaking
cannot occur: the analog of the �4,0� QAH state is a fully
filled zeroth Landau level exhibiting quantized Hall conduc-
tance 2e2 /h. Furthermore, in the QHF problem there is no
competition between states with different M� and M� val-
ues, which is the main question of interest for us here.

IV. LIFTING ACCIDENTAL DEGENERACIES USING
EXTERNAL FIELDS

The SU�4� symmetry of the Hamiltonian guarantees the
degeneracy of all states within a given manifold �M� ,M��,
even when the states involved have very different physical
properties. For example, the QVH state is a ferroelectric state
which polarizes the layers by charge while the QSH state
polarizes the layers by spin and valley. Nonetheless, the two
states are related by SU�4� transformations, and are hence
degenerate within the approximations leading to SU�4� sym-
metry.

In contrast, the degeneracy of the different manifolds
�M� ,M�� is purely accidental, and may be lifted in the pres-
ence of a weak SU�4� invariant perturbation. As an example,
we consider application of a weak transverse magnetic field
B. Incorporated in Hamiltonian �6� through the replacement
p→p−eA, it preserves the SU�4� symmetry, and causes the
spectrum to split into Landau levels19 with an energy spacing
of order ��c, where �c=eB /mc. The Zeeman energy
2�BB�3 is not SU�4� invariant but may be neglected since
��c��2�BB. When 
=0 and Zeeman terms are neglected,
the Landau-level spectrum is particle-hole symmetric and is
fourfold degenerate in flavors.

Crucially, the T noninvariance of the mass term 
�3
means that the Landau-level spectrum for the �4,0� state is
not invariant under B→−B and is not particle-hole
symmetric.15 In particular, the zeroth Landau level, which
has an additional twofold orbital degeneracy,19 forms at en-
ergy 
 sgn B only, and has no counterpart at −
 sgn B �see
Figs. 1�a� and 1�b��. This breaking of particle-hole symmetry
can be exploited to induce the �4,0� state using magnetic
fields.

We illustrate this by comparing the energies of the �4,0�
QAH state and the �2,2� QSH state in external magnetic field
at filling factor �=4. In a magnetic field, these states are no
longer degenerate because of the anomalous Landau level. It
is clear from Fig. 1 that the QAH state with the appropriate
sign of 
 �such that B
�0� is favored over the QSH state,

F4,0 − F2,2 =
4
B

�0
� 0, �8�

where �0 is the flux quantum and FM�,M�
is the free energy

per unit area for a state �M� ,M��. This mechanism for lift-
ing the degeneracy between QAH and QSH states in favor of
the QAH state applies to all systems where there is such a
degeneracy, including the models studied in Refs. 2 and 3.
Of course, at finite B, there is no time-reversal symmetry so
the state realized is not a true QAH state, but rather is a state
showing quantum Hall effect at anomalously low magnetic
fields, which is smoothly connected to a QAH state at B=0.

The analysis above is valid only for sufficiently small B,
when BLG at �=4 is not far from charge neutrality. This is
because the excitonic instability that generates the gap 

�Refs. 4–6� is suppressed by detuning away from charge
neutrality.

V. SADDLE-POINT ANALYSIS

We now investigate the energy splitting between the dif-
ferent manifolds at B=0 by going beyond a mean-field ap-
proximation, and including the effect of fluctuations. We
consider BLG in the presence of screened Coulomb interac-
tions between electrons. A static screening approximation,
ignoring the effects of dynamical screening,5 is sufficient to
understand the main features. In this approximation, the in-
teraction is short range, and we can write the partition func-
tion as a functional field integral in Euclidean time,

Z =� D�†D� exp�−� dxL��†�x�,��x��� , �9�

where x= �t ,r�, dx=dtd2r, the � fields are fermionic fields,
with the Lagrangian

L = �†��t + H0�� + �
j,k=1. . .8

	

2
� j

†�k
†�k� j . �10�

Here j and k are combined sublattice and flavor indices, and
H0 is the noninteracting Hamiltonian �given by Eq. �6� at

=0�. The coupling constant 	 represents the statically
screened Coulomb interaction, which in the random-phase
approximation model takes value20 	=1 / �4�0 ln 4�, where
�0=m /2
 is the noninteracting single-species density of
states. We now decouple the four fermion interaction term
via a Hubbard-Stratonovich transformation in the exchange
channel, to obtain Z=	D�†D�Dh exp�−	dxL��† ,� ,h��,
where

L = �†��t + H0 + h�� +
1

2	
Tr�hh†� . �11�

Here, h is an 8�8 Hermitian matrix, which we write as h
=M � Q, where M is a 2�2 Hermitian matrix in sublattice

FIG. 1. �Color online� Landau-level spectrum of the QAH and
QSH states. Note an anomalous Landau level in the QAH state that
has no particle-hole-symmetric counterpart. Occupation of this
anomalous Landau level allows the �a� QAH state to lower its en-
ergy relative to the �b� and �c� states at filling factor �=4.
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space and Q is a 4�4 Hermitian matrix in flavor space.
The gapped states �Refs. 4–6� correspond to taking
M =
�3. Integrating out the fermions yields Z=	D�Q�
�D�
�exp�−	dxL�
�x� ,Q�x���, where

L�
,Q� = − Tr ln��t + H0 + 
�3Q� +

2

	
Tr�Q2� . �12�

The SU�4� flavor invariance manifests itself in an exact
SU�4� flavor degeneracy of the many-body states. Upon
minimizing the action �12� in a saddle-point approximation,
we find Q2=1 and 
=� exp�−2 /	�0�, where �
0.4 eV is
the bandwidth for the two-band Hamiltonian. This gives the
mean-field Hamiltonian, Eq. �6�.

We note that instead of decoupling the interaction in the
excitonic channel h=�3 � Q, we could have chosen the chan-
nel h=�1,2 � Q. This choice would lead us to the nematic
state of Ref. 7, which is gapless, but breaks lattice rotation
symmetry. However, the nematic state is higher in energy
than the gapped states at the saddle-point level, so we will
concentrate on the gapped states, and specifically on the lift-
ing of the accidental degeneracies by thermal and zero-point
fluctuations.

Our symmetry analysis, involving multiplets �M� ,M��
for different matrices Q, could also be applied to the nematic
state.7 However, the fluctuation analysis cannot be performed
because the �3�Q mode has negative rigidity, i.e., the nem-
atic mean field is unstable.

VI. LIFTING THE DEGENERACY:
ZERO-POINT FLUCTUATIONS

We first analyze the case of zero temperature, when the
degeneracy is lifted by zero-point fluctuations. The most im-
portant fluctuation modes are those that are softened under
RG. In BLG, this means the “L” modes �3�Q, which de-
scribe fluctuations longitudinal with respect to the order pa-
rameter in sublattice space, and also the “T” modes �1,2�Q,
which describe fluctuations transverse to the order parameter
in sublattice space. In that, �Q is an arbitrary 4�4 Hermit-
ian matrix.

We therefore expand the action in Eq. �12� to quadratic
order in the fluctuation modes �� � �Q�, �=1,2 ,3, to obtain

�2S = �
ijkl��

�
�,q

�Qij,�q
� Kijkl

�� ��,q��Qkl,−�,−q
� . �13�

Here, Latin indices i , j ,k=1, . . . ,N refer to fermion flavor
whereas Greek indices � ,�=1,2 ,3 refer to the Pauli matri-
ces �� that parameterize the fluctuations in sublattice space.
The matrix K is defined by

Kijkl
�� ��,k� = �il� jk����

	
+ �ij

����,k�� , �14�

where we have introduced the polarization operator,

�ij
����,q� =� d2pd�

2�2
�3Tr���Gi�p+���Gj�p−�� . �15�

It is convenient to choose a diagonal background state Q
=�i�ij, where �i= �1 so that the Green’s function takes a
form diagonal in the flavor space,

Gi�p�� =
1

i�� �
1

2
�� − H0�p �

1

2
q� − �i
�3

. �16�

The trace in Eq. �15� goes over sublattice indices but not
over flavors.

The matrix K is positive definite so we may integrate out
fluctuations to obtain an expression for the fluctuation con-
tribution to the free energy,

Ffluct =
1

2�
�ij

�
�k

ln Kijji
����,k� , �17�

where we took into account that the only contribution comes
from the diagonal terms, �=�, i= l, and j=k. We now sub-
tract the fluctuation energy of the �4,0� QAH state from that
of the �2,2� state, to obtain

�F = Ffluct,�4,0� − Ffluct,�2,2� = 4�
�=1

3

ln

1

	
+ ���

��

1

	
+ ���

��

, �18�

where ���
�� and ���

�� are defined by Eq. �15� with ��i ,� j�
= �1,1� and �1,−1�, respectively,

���
�� ��,q� =� d2pd�

�2
�3

1

2
Tr���G��p+���G��p−�� , �19�

���
�� ��,q� =� d2pd�

�2
�3

1

2
Tr���G��p+���G��p−�� ,

G������,p� =
1

i� − H0�p� � 
�3
, �20�

where we used a shorthand notation p�= ���
1
2� ,p�

1
2q�.

To analyze the effect of competition of different modes in
full detail, below we compare the fluctuation energy for the
states of different type �M� ,M��.

To evaluate the difference of fluctuation energies, given
by Eq. �18�, it is convenient to rewrite it as

�F = 4�
�=1

3

ln
1 +
���

�� − ���
��

1

	
+ ���

�� � . �21�

Below we evaluate the differences of polarization functions
���

�� −���
�� , and find that different modes, L and T, yield

contributions of opposite sign.
In particular, we find that ���

33 −���
33 is positive, i.e., the

L-modes favor the �2,2� state. This effect of longitudinal
modes is well known in the topological insulator literature.2

In contrast, the differences ���
�� −���

�� with �=1,2 are
negative. Thus, the T-modes, which are unique to BLG, favor
the �4,0� state. We evaluate Eq. �18�, and find that the
T-modes dominate the free energy, favoring the QAH state.

To proceed with the analysis of the quantities ���
��

−���
�� , it is convenient to define ��=��� /2 and z�

= �p�
1
2q�2 /2m. In this compact notation, we have
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���
�� − ���

�� =� F����,p�
��+

2 + z+
2 + 
2���−

2 + z−
2 + 
2�

d2pd�

�2
�3 ,

F����,p� = 
2 Tr����3���3� + 
 Tr������3��i�+�

+ 
 Tr���H0�p +
1

2
q����3� . �22�

Terms in Eq. �22� linear in 
 must vanish since the fluc-
tuation energy should be invariant under sign changing 

→−
. Technically, the vanishing of terms linear in 
 fol-
lows because Tr����3���=0 and Tr���H0���3�=0. As a re-
sult, the first term in F���� ,p� �at order 
2� is the only term
that survives. We can substitute the expression in Eq. �22�
into Eq. �18� and expand the logarithm in small 
2, to obtain

�F = 4� �
�


2 Tr����3���3�
D����,q���+

2 + z+
2 + 
2���−

2 + z−
2 + 
2�

�23�

=4� �−
1

D11��,q�
−

1

D22��,q���+
1

D33��,q��
�

2
2

��+
2 + z+

2 + 
2���−
2 + z−

2 + 
2�
, �24�

where 	¯=	 d�d�d2pd2q
�2
�6 . . . and D���� ,q�= 1

	 +���
�� �� ,q�.

The integral over � may be performed exactly by the method
of residues, to give

�F = 4
2� d�d2qd2p

�2
�5 �−
1

D11��,q�
−

1

D22��,q�

+
1

D33��,q��
1

�+
+

1

�−

�2 + ��+ + �−�2 ,

where ��=�z�
2 +
2. The integral over p may now be per-

formed with logarithmic accuracy. The dominant contribu-
tions come from ��
0, and may be evaluated as

�F = 8
2�0� d�d2q

�2
�3 �−
1

D11��,q�
−

1

D22��,q�

+
1

D33��,q�� ln�r/
�
r2 , �25�

where we have used the pseudopolar coordinates r2=�2

+ �q2 /2m�2 and have assumed that r��
.
We now have to calculate the various functions D��. We

will calculate these quantities analytically with logarithmic
accuracy. We begin with the definition D��= 1

	 +���
�� , where

the polarization functions are defined in Eqs. �19� and �20�.
We note that the polarization functions �ij

�� are logarithmi-
cally divergent at small �, small �q�2 /2m and 
=0. The co-
efficient of the logarithm can be extracted by setting �, q,
and 
=0 in the integral in Eqs. �19� and �20�, and introduc-
ing an IR cutoff r, where r2=�2+ ��q�2 /2m�2, and we assume
r�
. In this manner, we obtain

D11 = D22 =
1

	
− �

r

� d�d2p

�2
�3

�2 − z2e2i�p

��2 + z2�2 , �26�

D33 =
1

	
− �

r

� d�d2p

�2
�3

�2 + z2

��2 + z2�2 , �27�

where we have introduced the notation z= �p�2
2m and �p�ei�p

= px+ ipy. The integrals may be straightforwardly performed
by changing to the pseudopolar coordinates �� ,� ,�p�, where
�=� cos �, z=� sin �, and �p was defined above. The inte-
gral goes over 0��p�2
, 0���
, and r����. Inte-
grating in turn over �p, �, and �, we find

D11 = D22 =
1

	
−

�0

4
ln

�

r
, D33 =

1

	
−

�0

2
ln

�

r
. �28�

We now recall the relation 	−1= 1
2�0 ln � /
 �the gap equa-

tion�, and substitute it into Eq. �25�, to obtain

�F = 8
2�0�



� dr

r 
−
4

ln
�



+ ln

r




+
1

ln
r



�ln

r



. �29�

This integral can be evaluated using the substitution x=ln r

 ,

giving

�F = 8
2�0�
0

ln��/
� ln��/
� − 3x

ln��/
� + x
dx . �30�

Evaluating the integral, we obtain a negative value

�F = 8�− 3 + 4 ln 2�
2�0 ln
�




 − 1.82
2�0 ln

�



, �31�

which favors the QAH state.
It should be noted that the difference in energies between

the �4,0� and �2,2� manifolds is of the same order as the
mean-field energy so the mean-field plus fluctuations analy-
sis is ill controlled. However, it provides us with an intuition
about the splitting between manifolds of different signatures,
and we believe the qualitative details of the fluctuation split-
ting are reproduced correctly by this analysis.

We note that our fluctuation analysis included only those
modes that correspond to weak-coupling instability in BLG.
We could also have included Stoner modes in our fluctuation
analysis. These would produce an additional contribution,

�FStoner = 8
2�0� d�d2q

�2
�3

1

D00��,q�
ln�r/
�

r2 , �32�

D00 =
1

	
+ ���

00 , �33�

where ���
00 is defined by Eq. �20� with �=�=0, i.e., with

��=��=1. Now, since ���
00 is not log divergent, we can take

D00=1 /	 with logarithmic accuracy. We then obtain a con-
tribution �FStoner=4
2�0 ln � /
, which is sufficiently large
to change the sign of the result Eq. �31�. However, this cal-
culation, which neglects correlation effects, is likely to
strongly overestimate the effect of Stoner modes, and there-
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fore we believe that Stoner modes should be left out of the
fluctuation analysis.

VII. LIFTING THE DEGENERACY:
THERMAL FLUCTUATIONS

Thermal fluctuations are dominated by gapless Goldstone
modes, which are present only in the states that break SU�4�
symmetry. In a state �M� ,M��, there are M�M� Goldstone
modes. Thermal fluctuations due to Goldstone modes allow a
state to gain entropy, and since the �2,2� states have the most
Goldstone modes, they have the highest entropy. It may thus
be expected that the �2,2� states dominate at sufficiently high
temperature.

Below we present an analysis showing that this expecta-
tion is correct. Since gapless fluctuation modes appear only
in the L-mode channel �h �3�Q, it is sufficient to restrict
our attention to the L-modes. The general expression for the
fluctuation part of the free energy, taking into account
L-modes only, is given by a sum over Matsubara frequen-
cies,

Ffluct =
1

2
T �

�n,k
�
i,j

ln� 1

	
+ �ij

33��n,k�� , �34�

where �n=2
nT.
We will perform a long-wavelength expansion of

�ij
33�� ,k�. At zeroth order, we note that at � ,k=0 the

values of ���
33 and ���

33 are given by

���
33 ��,k = 0� =

1

2
� d2pd�

�2
�3 tr��3G��3G��

= −� �2 + z2 − 
2

��2 + z2 + 
2�2

d2pd�

�2
�3 ,

���
33 ��,k = 0� =

1

2
� d2pd�

�2
�3 tr��3G��3G��

= −� �2 + z2 + 
2

��2 + z2 + 
2�2

d2pd�

�2
�3 ,

where G����=1 / �i�−H0�p��
�3�. To distinguish Gold-
stone modes from gapped modes, it is convenient to recall
the gap equation

1

	
=� 1

�2 + z2 + 
2

d2pd�

�2
�3 . �35�

Hence, we have 1
	 +���

33 �0�=0, which corresponds to a
Goldstone mode whereas in the case of ���

33 , we have

1

	
+ ���

33 �0� =� 2
2

��2 + z2 + 
2�2

d2pd�

�2
�3 , �36�

which is manifestly positive. Thus, Goldstone modes exist
only in states �M� ,M��, where M��0 and M��0.

The free energy, Eq. �34�, evaluated at leading order in a
long-wavelength expansion around � ,k=0, is given by a
sum

Ffluct = T �
�n,k

M�M� ln�a�n
2 + bk2� �37�

+
1

2
�M�

2 + M�
2 �ln�a��n

2 + b�k2 + c� , �38�

where the first term is the contribution of the gapless modes
�originating from ���

33 � while the second term is the contri-
bution of the gapped modes �originating from ���

33 �. The
coefficients a, a�, b, and b� are obtained by Taylor expanding
�ij

33�� ,k� in small � and k while c is given by Eq. �36�.
To simplify the sum over Matsubara frequencies, it is con-

venient to define the quantity f�u�=T��n,kln��n
2+u2�. We can

evaluate f�u� by first taking the derivative

df

du
= T �

�n,k

1

i�n + u
+ c.c. = coth

u

2T
,

and then integrating it over u to obtain

f�u� = 2T ln sinh
u

2T
= 2T ln�1 − e−u/T� + u − �2 ln 2�T .

Plugging this identity into the sum �37�, we see that the
contribution of the gapped modes is exponentially small at
low temperatures, T!�c /a��
 while the sum over gapless
modes gives a negative contribution of a power-law form,

Ffluct = �
k

2M�M�T ln�1 − e−v�q�/T� , �39�

where v=b /a��
 /m. Evaluating the integral, we obtain an
estimate

Ffluct � − M�M���0/
�T3, �40�

which describes the free-energy gain due to thermal fluctua-
tions of Goldstone modes.

We see that the gapless Goldstone modes dominate the
finite-temperature fluctuation contribution to the free energy.
These modes lower the free energy �by increasing entropy�.
Since the number of gapless modes M�M� is maximal for
the �2,2� states, these states are entropically favored by ther-
mal fluctuations.

What is the outcome of competition between the zero-
point fluctuations and thermal fluctuations? In Sec. VI, we
found that at zero temperature the �0,4� QAH state is ener-
getically favored by zero-point fluctuations of the modes
“softened” under RG. At the same time, the zero-point fluc-
tuations of other modes, such as the Stoner modes, may have
an opposite effect, favoring the �2,2� state. In the event, the
zero-point fluctuation energy is dominated by such nonsoft
modes, the �2,2� state will be realized in the entire tempera-
ture interval where the system is unstable to gap formation.

A more interesting situation may arise if the zero-point
fluctuation energy is dominated by the RG-softened modes,
favoring the QAH state at zero temperature. In this case,
given the opposite effect of zero-point and thermal fluctua-
tions, we have to consider the competition between the QAH
and �2,2� states. Since the thermal fluctuation energy �Eq.
�40�� vanishes at T=0, we expect that zero-point fluctuations
will dominate below a certain temperature T�, above which
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thermal fluctuations will dominate. If T��Tc, where Tc


�T=0� is the critical temperature for gap opening, then a
QAH state will be realized at low temperatures 0�T�T�

whereas a �2,2� gapped state will be realized in the interval
T��T�Tc. In contrast, if T��Tc, then the QAH state will
transition directly to an ungapped state at T=Tc via a second-
order phase transition, and the �2,2� state will not be realized.

A rough estimate of the temperature T� can be obtained by
comparing the free energies �Eqs. �31� and �40��,

�Ffluct,�2,2� � − 4�0
T3



, �Ffluct,�0,4� � − 1.82�0
2 ln

�



,

�41�

indicating that the scale for T� is comparable to the tempera-
ture Tc at which the gapped state forms. A more detailed
analysis of temperature-driven transition between the QAH
state and �2,2� state is beyond the scope of this work.

VIII. EXPERIMENTAL SIGNATURES OF THE QAH STATE

We now discuss experimental tests of the QAH state. The
clearest experimental signature would be detection of the
quantum Hall effect at zero external magnetic field. How-
ever, detection of this effect requires four-probe measure-
ments performed on a sample of BLG that is sufficiently
clean and at sufficiently low temperatures as to exhibit spon-
taneous gap opening.5 Such measurements have not yet been
performed. Moreover, detection of this effect could be com-
plicated by the formation of domains with opposite signs of

. Different domains will have opposite �xy so the Hall con-
ductance of a macroscopic sample will average to a value
near zero. However, if there is percolation of edges, there
will be a nonvanishing two-terminal conductance of order
e2 /h.

Alternative experimental tests of the QAH state may be
performed by examining the electronic compressibility in
weak magnetic fields. When the chemical potential sits near
the missing Landau level in Fig. 1, there should be a gap that
extrapolates to a nonzero value as B→0. This effect will be
seen at either �=4 or �=−4 if there is only one domain, and
at �= �4 if there are multiple domains.

The gap at �=4 will be strengthened by the mechanism
outlined around Eq. �8�, however, a signal at �=−4 will be

seen only if the QAH state is intrinsic, rather than field in-
duced. An incompressible region at �=−4 combined with a
gapped state at B=0 can thus be taken as a diagnostic for a
QAH state at B=0. The filling factors �= �4 are not equiva-
lent because the QAH state breaks particle-hole symmetry in
magnetic field.

Another experimental signature is a phase transition at
filling factor �=0 and finite B from a QAH state to the quan-
tum Hall ferromagnet �QHF� states that are expected to form
at large magnetic fields.11 Such a phase transition would not
be seen if the dominant state at small B was of �2,2� type
since the �2,2� states are smoothly connected to the QHF
state.

An incompressible region at �= �4 that occurs at anoma-
lously low magnetic fields, such that the features in com-
pressibility at other integer � values are washed out, was
found in recent experiments that employed capacitance scan-
ning probe to study suspended BLG samples.9 In transport
measurements,10 performed on the same system, a state with
a finite two-terminal conductance of order e2 /h was found at
zero field, which at a finite B field undergoes a transition to a
gapped state. These measurements are all compatible with
the QAH state, however, since there is as yet no four-
terminal measurement, it is not possible to say for certain
whether a QAH state has been observed.

In summary, our symmetry classification of the various
gapped states proposed for BLG singles out the QAH state as
the only gapped state not breaking any continuous symmetry.
We have investigated the fluctuation-induced splitting of the
gapped states, and concluded that at zero temperature and
zero field, the leading instability is to the QAH state. We
have discussed the phenomenology and experimental signa-
tures of this state, and have shown that it can be stabilized by
weak external magnetic field.
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